Improvement of the WENO-NIP Scheme for Hyperbolic Conservation Laws
نویسندگان
چکیده
The WENO-NIP scheme was obtained by developing a class of L1-norm smoothness indicators based on Newton interpolation polynomial. It recovers the optimal convergence order in smooth regions regardless critical points and achieves better resolution than classical WENO-JS scheme. However, produces severe spurious oscillations when solving 1D linear advection problems with discontinuities at long output times, it is also very oscillatory near for Riemann problems. In this paper, we find that spectral property exhibits negative dissipation characteristic, reason why unstable discontinuities. Using knowledge, develop way improving introducing an additional term to eliminate interval. proposed scheme, denoted as WENO-NIP+, maintains same property, well low-dissipation corresponding Numerical examples confirm much more stable large times Furthermore, new far less dissipative region high-frequency waves. addition, improved WENO-NIP+ can remove or least greatly decrease post-shock are commonly produced simulating 2D Euler equations strong shocks.
منابع مشابه
A Central Weno-tvd Scheme for Hyperbolic Conservation Laws
The purpose of this paper is to carry out a modification of the finite volume WENO (weighted essentially non-oscillatory) scheme of Titarev and Toro [10]. This modification is done by using the third order TVD flux [10] as building blocks in spatially fifth order WENO schemes, instead of the second order TVD flux proposed by Titarev and Toro. The resulting scheme improves both the original and ...
متن کاملCentral WENO schemes for hyperbolic systems of conservation laws
We present a family of high-order, essentially non-oscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially Non-Oscillatory (WENO) reconstruction of point-values from cell-averages, which is then followed by an accurate approximation of the fluxes via a natural continuous ext...
متن کاملFifth Order Multi-moment WENO Schemes for Hyperbolic Conservation Laws
A general approach is given to extend WENO reconstructions to a class of numerical schemes that use different types of moments (i.e., multi-moments) simultaneously as the computational variables, such as point values and grid cell averages. The key is to re-map the multi-moment values to single moment values (e.g., cell average or point values), which can then be used to invoke known, standard ...
متن کاملMulti-domain hybrid spectral-WENO methods for hyperbolic conservation laws
In this article we introduce the multi-domain hybrid Spectral-WENO method aimed at the discontinuous solutions of hyperbolic conservation laws. The main idea is to conjugate the non-oscillatory properties of the high order weighted essentially non-oscillatory (WENO) finite difference schemes with the high computational efficiency and accuracy of spectral methods. Built in a multi-domain framewo...
متن کاملA Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws
We present the first fourth-order central scheme for two-dimensional hyperbolic systems of conservation laws. Our new method is based on a central weighted nonoscillatory approach. The heart of our method is the reconstruction step, in which a genuinely two-dimensional interpolant is reconstructed from cell averages by taking a convex combination of building blocks in the form of biquadratic po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2022
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms11050190